Alcohol synthesis

An aldehyde

A ketone

 $\overset{I}{\mathsf{C}_{\mathsf{R}'}} \xrightarrow{[\mathsf{H}]}$

From alkenes

Hydration of alkene

- Acid-catalyzed hydration (Markovnikoff) syn + anti, carbocation, H⁺ shift
- Oxymercuration: anti (+ syn) Mercurinium ion, NO H+ shift
- Hydroboration: Non-Markovnikoff, syn

Hydroxylation of alkene

- Using OsO4 (syn)
- Using KMnO4 (syn)
- Using peroxyacid (anti)

Grignard Reaction

A carboxylic acid An ester NaBH, reduce ester slowly, does not reduce carboxylic acid 1) $LiAIH_{4}$ in ether/THF

H₃O⁺

Reduction of carboryl compound

Aldehyde to 1° alcohol - Ketone to 2° alcohol

A primary alcohol

A secondary alcohol

 $(\overset{O}{\downarrow} : H \longrightarrow (\overset{O}{\downarrow}) \overset{H}{\longrightarrow} (\overset{O}{\downarrow}) \overset{OH}{\longrightarrow} (\overset{OH}{\downarrow})$

alkoxide

Carboxylic acid/Ester to 1° alcohol

 $R \xrightarrow{II} H \xrightarrow{(H)} R \xrightarrow{I} C$

Reactions of Phenol

Electrophilic Aromatic Substitution

- ✓ -OH is strongly activating, ortho- and para-directing
- ✓ Electrophilic halogenation, nitration, sulfonation, and Friedel-Crafts reactions

Oxidation of Phenol: Quinones

- ✓ Unlike alcohols, phenol don't have a hydrogen atom on the hydroxyl-bearing carbon
- ✓ Oxidizing agents: Na₂Cr₂O₇ (common) or Fremy's salt [(KSO₃)₂NO]
- ✓ Quinones have oxidation and reduction properties

(CH₃)₃SiCI ► H_3O^+ + (CH₃)SiOH

Protection of alcohols

Protect –OH group from oxidizing agents, reducing agents and Grignard reagents

A primary alcohol

Chỉ hoàn nguyên nối đôi C=O

còn nối C=C vẫn bảo toàn

• NaBH₄ in H₂O/Alcohol

Coenzyme NADH or NADPH

• $LiAIH_{1}$ in ether/THF

Reagent